TECHNOLOGIES FOR LOW-CARBON & LEAN CONSTRUCTION

RESEARCH TEAM

K RAMAMURTHY

RAVINDRA GETTU

MANU SANTHANAM

KOSHY VARGHESE

BENNY RAPHAEL

RADHAKRISHNA PILLAI

PIYUSH CHAUNSALI

SURENDER SINGH

ASHWIN MAHALINGAM

SIVAKUMAR PALANIAPPAN

NIKHIL BUGALIA

EXPERTISE: CONSTRUCTION MATERIALS, CONSTRUCTION MANAGEMENT AND BUILDING SCIENCE

WASTE & SUSTAINABILITY

DEMAND AND AVAILABLE RESERVE OF CONCRETE INGREDIENTS		
MATERIAL	DEMAND (TONS/YR)	RESERVE (TONS)
SAND	751M	RESTRICTED
STONES	1.6B	126B
LIMESTONE	320 M ^a	89.3B

Source: Akhtar and Sarmah (2018)

Source: GIZ 2016; ^aStatista2019

ABOUT CENTER

VISION:

To be the primary destination in India for all interested in developing and implementing ideas on low-carbon, lean construction technologies.

MISSION:

To develop India's first integrated testbed for evaluating the usage of agricultural, industrial, and construction & demolition waste in concrete for directing practices, policies, and standards for waste reduction in Indian construction industry.

To utilize technology for minimization of material and process waste

THE APPROACH

SUSTAINABLE CONSTRUCTION

THE APPROACH

TECHNOLOGIES FOR LOW-CARBON & LEAN CONSTRUCTION

INTEGRATED TEST-BED

WASTE SOURCE

SUSTAINABLE INFRASTRUCTURE

PRELIMINARY PROCESSING

ADVANCED SORTING

ENGINEERED **PRODUCTS**

ND BIM SIMULATIONS

NATIONAL MAPS
FOR WASTE
MATERIAL USE IN
CONSTRUCTION

INDIA'S FIRST 3D PRINTED HOUSE
(IITM-TVASTA INITIATIVE)

MATERIAL SUPPLY CHAIN

DESIGN

CONSTRUCTION

DURABLE PERFORMANCE

FRAMEWORK TO TRACK C&D WASTE FLOW AT A CITY LEVEL

COUNTRY-WIDE
CASE STUDIES
FOR C&D
WASTE FLOW

FRAMEWORK TO LEVERAGE PRIVATE SECTOR PARTICIPATION

C&D WASTE COLLECTION

DEMOLITION

THE IMPACT

WASTE TO RESOURCE

SUSTAINABLE SYSTEMS

OPTIMAL STRATEGIES

POLICY FRAMEWORKS Recycling instead of landfilling (per ton of C&D waste)

- ✓ Reduce 6.41 kg CO₂ equivalent
- ✓ Save 89.93 Mega Joule in energy
- ✓ Save 0.32 m² of arable land

Source : Ram et al. 2020

INTERNATIONAL ENGAGEMENT

THANK YOU FOR ATTENDING!

You can visit us athttp://civil.iitm.ac.in/pcoe/tlc

or, contact us atbtcmoffice@civil.iitm.ac.in

Design Credits - Hardhik Pinjala, IITM